

Fast Track Service Land Technical Team Kick-Off AgriEnv Session Partner

Paolo Prosperi (JRC-agri)

European Commission Fast Track Service Land within the GMES initiative in FP-7

Concise product description

 Indicator displaying the areal extent, trend and relative degree of extensification

State of the art / overview of the methodology

- Characterization of intensity and spatial patterns/variation of land cover, related to permanent vegetation and field cover, for paired analysis in view of determining the observable impact of the extensification on the land cover condition
- Spatio-temporal characterisation of habitats and indicators for biodiversity impact assessment/modelling
- Remote sensing analysis aims at complementing the spatial aspects of impact assessment and that these approaches will need to be integrated with results from other coordinated studies.*

* Source: Michael Cherlet and Eva Ivits, 2007. Data Model and Analysis for Spatial Assessment of Environmental Impact and Targeting of Agri-Environmental Schemes at regional scales . JRC-IES

Related projects

GMES LADAMER

Test sites on which the product will be produced

EU10 – Guadalquivir (58,000 km2)

Needs of CMS products

- SATChMo (Seasonal and Annual Change Monitoring)
 - Medium resolution continental coverage of seasonal and annual vegetation parameters to produce Land Cover and agricultural Land Use
- BioPar
 - Near real-time and off-line series of biogeophysical parameters describing the continental vegetation state, the radiation budget at the surface and the water cycle

Needs of in situ data

Field data measurements will be needed for validation of the results

Concise product description

- State and trend of riparian vegetation
- Maps showing the zones where the application of the 'extensification' Agri-Environmental Measure produced a measurable effect on selected environmental parameters

State of the art / overview of the methodology

 Analysis of multi year phenological characteristics calculated from NDVI based vegetation abundance: changes in magnitude and phase, time curves and their cyclic patterns (after 'AEM effectiveness' methodology)*

Related projects

GMES LADAMER

* Source: Eva Ivits, Michael Cherlet, Wolfgang Mehl, Stefan Sommer, 2008. Estimating the ecological status and change of riparian zones in Andalusia assessed by multi-temporal AVHHR datasets. In press

Test sites on which the product will be produced

High risk areas inside EU10 – Guadalquivir (5,000 km2)

Needs of CMS products

- SATChMo (Seasonal and Annual Change Monitoring)
 - SATChMo to provide a complete medium resolution continental coverage of seasonal and annual vegetation parameters to produce Land Cover and agricultural Land Use
- Euroland
 - Of minor relevance: Very high resolution Urban Atlas inventory and change

Needs of in situ data

Remotely sensed time series analysis methods for the observation of environmental status

Derived phenological indices

17/11/2008

Remote Sensing Phenological Indicator of the status of the riparian zone (permanent vegetation fraction)

Green dots: field observations of the natural riparian status. Red dots: field observations of the bad riparian status

Remote Sensing Phenological Indicator of the status of the riparian zone (permanent vegetation fraction)

Classification accuracy = 87%.

Erosion control measures in olives in Andalusia

Erosion control measures in olives in Andalusia

Integrated intensive olive cultivation (irrigated)

Production is increased only if new trees are planted

Traditional intensive olive cultivation (irrigated)

Production per tree is increased by external input

Temporal evolution (1989-2004) of the phenological indicator in the natural and bad riparian status in olives with and without AEMs

Olives without measures under bad status

deoland

Temporal evolution (1989-2004) of the permanent vegetation in the natural and bad riparian status in olives with and without AEMs

Full line:

geoland

Olives with measures under natural status

Dashed line:

Olives without measures under natural status

Dotted line:

Olives with measures under bad status

Dotted-dashed line:

Olives without measures under bad status

Linear trend analysis of the remotely sensed phenological index

	R ²	Durbin- Watson	B-value of time	Significance
Natural status, AEM	0.263	2.468	17.414	0.042
Natural status, no AEM	0.198	2.254	8.086	0.084
Bad status, AEM	0.323	2.680	14.770	0.022
Bad status, no AEM	0.132	2.308	6.536	0.166

Concise product description

Indicator displaying the area and rate of abandoned arable land

State of the art / overview of the methodology

- Comparison of land cover maps but only if resolution is detailed
- Verified method 2 not based on RS: comparison of UAA evolution in two FSS censuses at LAU2 and considering only losses > 100 ha/year (or 0,6%/year)*

Related projects

Geoland, FAO-GLCN, LPIS

Test sites on which the product will be produced

EU15 – Strymonas/Struma river basin (12,500 km2)

Based on the JRC Scientific and Technical Report on the "Analysis of Farmland Abandonment..." 23411EN

geoland

Needs of CMS products

- Euroland
 - Very high resolution Urban Atlas inventory and change
- SATChMo (Seasonal and Annual Change Monitoring)
 - SATChMo to provide a complete medium resolution continental coverage of seasonal and annual vegetation parameters to produce Land Cover and agricultural Land Use

Needs of in situ data

In situ data are needed to field validation of the results

FLA intensity and location*:

* Based on the JRC Scientific and Technical Report on the "Analysis of Farmland Abandonment..." 23411EN

Fast Track Service Land Technical Team Kick-Off AgriEnv Session Partner

Thank you

Paolo Prosperi JRC-agri, Ispra E-mail: paolo.prosperi@jrc.it